MEDICAL IMAGING INFORMATICS: LECTURE # 6

SEGMENTATION

Norbert Schuff
Professor of Radiology
VA Medical Center and UCSF
Norbert.schuff@ucsf.edu

Overview

- Definitions
- Role of Segmentation
- Segmentation methods
 - Intensity based
 - Shape based
 - Texture based
- Summary & Conclusion
- Literature

The Concept Of Segmentation

Identify classes (features) that characterize this image!

Intensity: Bright - dark

Shape: Squares, spheres, triangles

Texture: homogeneous – speckled

Connectivity: Isolated - connected

Topology: Closed - open

More On The Concept Of Segmentation:

Deterministic versus probabilistic classes
Can you still identify multiple classes in each image?

Segmentation Of Scenes

Segment this scene!
Hint: Use color composition and spatial features

By J. Chen and T. Pappas; 2006, SPIE; DOI: 10.1117/2.1200602.0016

Examples: Intensity, Texture, Topology

Gray matter segmentation

151

topology

Segmentation of abdominal CT scan

By texture

By intensity

image at: www.ablesw.com/3d-doctor/3dseg.htm

Stephen Cameron. Oxford U, Computing Laboratory

Definitions

 Segmentation is the partitioning of an image into regions that are homogeneous with respect to some characteristics.

In medical context:

 Segmentation is the delineation of anatomical structures and other regions of interest, i.e. lesions, tumors.

Formal Definition

If the domain of an image is Ω , then the segmentation problem is to determine sets (classes) Z_k , whose union represent the entire domain

$$\Omega = \bigcup_{k=1}^{N} Z_k$$

Sets are connected:

$$Z_{k} \bigcap Z_{j} = \alpha;$$

$$k \neq j; 0 \leq \alpha < \Omega$$

More Definitions

- When the constraint of connected regions is removed, then determining the sets Z_k is termed pixel classification.
- Determining the total number of sets K can be a challenging problem.
- In medical imaging, the number of sets is often based on a-priori knowledge of anatomy, e.g. K=3 (gray, white, CSF) for brain imaging.

Labeling

- Labeling is the process of assigning a meaningful designation to each region or pixel.
- This process is often performed separately from segmentation.
- Generally, computer-automated labeling is desirable
- Labeling and sets Z_k may not necessarily share a oneto-one correspondence

Dimensionality

- Dimensionality refers to whether the segmentation operates in a 2D or 3D domain.
- Generally, 2D methods are applied to 2D images and 3D methods to 3D images.
- In some instances, 2D methods can be applied sequentially to 3D images.

Characteristic and Membership Functions

 A characteristic function is an indicator whether a pixel at location j belongs to a particular class Z_k.

$$\chi_{k} \quad j = \begin{cases} 1 \text{ if .element.of .class} \\ 0 \quad \text{otherwise} \end{cases}$$

This can be generalized to a membership function, which does not have to be binary valued.

$$0 \le \chi_k$$
 $j \le 1$, for all pixels. & classes
$$\sum_{k=1}^{N} \chi_k$$
 $j = 1$, for all pixels

The characteristic function describes a "deterministic" segmentation process whereas the membership function describes a "probabilistic" one.

Simple Membership Functions

binary: χ_k j

probabilistic: χ_k *j*

sigmoid.function

$$y = \frac{1}{1 + \exp(-a - x) * b}$$

Segmentation Has An Important Role

Segmentation Methods

Threshold Method

Angiogram showing a right MCA aneurysm

Dr. Chris Ekong; www.medi-fax.com/atlas/brainaneurysms/case15.htm

Histogram (fictitious)

Threshold Method

Original

Threshold min/max

Threshold standard deviation

Threshold Method Applied To Brain MRI

White matter segmentation

- •Major failures:
 - Anatomically non-specific
 - Insensitive to global signal inhomogeneity

Threshold: Principle Limitations

- Works only for segmentation based on intensities
- Robust only for images with global uniformity and high contrast to noise
- Local variability causes distortions
- Intrinsic assumption is made that the probability of features is uniformly distributed

Region Growing - Edge Detection

Seed point

Guided e.g. by energy potentials:

- Region growing groups pixels or subregions into larger regions.
- A simple procedure is pixel aggregation,
- It starts with a "seed" point and progresses to neighboring pixels that have similar properties.
- Region growing is better than edge detection in noisy images.

Similarity:
$$V(i, j) = \frac{I_i - I_j}{\sigma_{i,j}}$$
, equivalent.to.a.z – score

Edges:
$$V l, r = I_l - I_r \cdot erf(x) + I_r$$

Region Growing - Watershed Technique

CT of different types of bone tissue (femur area)

M. Straka, et al. Proceedings of MIT 2003

- (a) WS over-segmentation
- (b) WS conditioned by regional density mean values
- (c) WS conditioned by hierarchical ordering of regional density mean values

Region Growing: Principle Limitations

- Segmentation results dependent on seed selection
- Local variability dominates the growth process
- Global features are ignored
- Generalization needed:
 - Unsupervised segmentation (i.e.insensitive to selection of seeds)
 - Exploitation of both local and global variability

Clustering

- Generalization using clustering
- Two commonly used clustering algorithms
 - K-mean
 - Fuzzy C-mean

Definitions: Clustering

- Clustering is a process for classifying patterns in such a way that the samples within a class Z_k are more similar to one another than samples belonging to the other classes Z_m, m ≠k; m = 1...K.
- The k-means algorithm attempts to cluster n patterns based on attributes (e.g. intensity) into k classes k < n.</p>
- The objective is to minimize total intra-cluster variance in the leastsquare sense:

$$\sigma = \sum_{k=1}^{K} \sum_{\chi_j \in S_k} |\chi_j - \mu_k|^2$$

for k clusters Z_k , k=1, 2, ..., K. μ_i is the mean point (centroid) of all pattern values $m_j \in Z_k$.

Fuzzy Clustering

- The fuzzy C-means algorithm is a generalization of K-means.
- Rather than assigning a pattern to only one class, the fuzzy C-means assigns the pattern a number m, 0 <= m
 1, described as membership function.

Three classes

Four classes

Original

K – means: TRAPPED!

Fuzzy C - means

Four classes

Component 1
These two components explain 100 % of the point variability.

Fuzzy C- Means Segmentation I

Two classes

Fuzzy Segmentation II

Four classes

Original

Class I

Class 3

Class 2

Class 4

Brain Segmentation With Fuzzy C-Means

4T MRI, bias field inhomogeneity contributes to the problem of poor segmentation

Clustering: Principle Limitations

- Convergence to the optimal configuration is not guaranteed.
- Outcome depends on the number of clusters chosen.
- No easy control over balancing global and local variability
- Intrinsic assumption of a uniform feature probability is still being made
- Generalization needed:
 - Relax requirement to predetermine number of classes
 - Balance influence of global and local variability
 - Possibility to including a-priori information, such as non-uniform distribution of features.

Segmentation As Probabilistic Problem

- Treat both intensities Y and classes Z as random distributions
- The segmentation problems is to find the classes that maximize the likelihood to represent the image
- Segmentation in Bayesian formulation becomes :

$$P(Z \mid Y) = \frac{P(Y \mid Z) * P(Z)}{P(Y)}$$

- where
 - Z is the segmented image (classes z₁z_K)
 - Y is the observed image (values y₁y_n)
 - p(Z) is the prior probability
 - p(Y|Z) is the likelihood
 - P(Z|Y) is the segmentation that best represents the observation.

Bayesian Concept

Treat Segmentation As Energy Minimization Problem

Since p(B) = observation is stable, it follows:

$$\ln p(Z|Y) = \ln p(Y|Z) + \ln p(Z)$$

- The goal is to find the most probably distribution of p(Z|Y) given the observation p(Y)
- Since the log probabilities are all additive, they are equivalent to distribution of energy
- segmentation becomes an energy minimization problem.

Probability In Spatial Context

- Use the concept of Markov Random Fields (MRF) for segmentation
- Definition:
 - Classes Z are a MRF
 - Classes exist: p(z) > 0 for all $z \in Z$
 - Probability of z at a location depends only on neighbors
 - Observed intensities are a random process following a distribution of many degrees of freedom.

and 2nd order MRFs

Ising model of spin glasses

1st and 2nd order MRFs

Step I: Define prior class distribution energy:

$$\delta z_s, z_t = \begin{cases} -1, & z_s = z_t \\ +1 & z_s \square z_t \end{cases}$$

1st and 2nd order MRFs

Step I: Define prior class distribution energy:

$$\delta \quad z_s, z_t = \begin{cases} -1, & z_s = z_t \\ +1 & z_s \square z_t \end{cases}$$

 Step II: Select distribution of conditional observation probability, e.g gaussian:

$$E_{y|z}$$
 $p,q \propto \frac{y_{p,q} - \mu_z^2}{2\sigma_z^2}$

- Y_{p,q} is the pixel value at location (p,q)
- μ_z and σ_z are the mean value and variance of the class z

1st and 2nd order MRFs

Step III: Solve (iteratively) for the minimal distribution energy

$$\arg\min E_{z|y} \quad p,q \quad \propto \sum_{t \in N_s} \delta \quad z_s, z_t \quad + \frac{y_{p,q} - \mu_z}{2\sigma_z^2}$$
 assignment similarity energy

How To Obtain A Prior Of Class Distributions?

Average Gray Matter Map
Of 40 Subjects

Segmen

The Process of MRF Based Segmentation

4T MRI, SPM2, priors for GM, WM based on 60 subjects

Generalization: Mixed Gaussian Distributions

White matter

$$\arg\min E_{z|y} \quad p,q \quad \propto \sum_{t \in N_s} \delta \quad z_s, z_t \quad + \frac{y_{p,q} - \mu_z}{2\sigma_z^2}.$$

White matter White matter lesion

$$\arg\min E_{z|y} \ p,q \ \propto \sum_{t \in N_s} \delta \ z_s, z_t \ + \frac{y_{p,q} - \mu_z}{2\sigma_z^2} + \frac{y_{p,q} - \mu_w}{2\sigma_w^2} + .$$

Find solution iteratively using Expectation Maximization (EM)

Expectation Maximization Of MRF Based Segmentation

EMS

Standard

1.5 MRI, SPM2, tissue classes: GM, WM, CSF, WM Lesions

MRF Based Segmentation Using Various Methods

A: Raw MRI

B: SPM2

C: EMS

D: HBSA

from Habib Zaidi, et al, Neurolmage 32 (2006) 1591 – 1607

Jie Zhu and Ramin Zabih Cornell University

GEO-CUTS ALGORITHM FOR 3D BRAIN MRI SEGMENTATION

Principle Limitations Of MRF

Case where a simple energy minimization might not work:

- green: wrong segmentation
- red: correct segmentation

The segmentation energy of green might be smaller than that of red based on simple separation energy

A Case As Motivation

• EMS

areas where EMS have problems.

How Geo-cuts Works

- The separation penalty is defined based on <u>magnitude</u> and <u>direction</u> of image gradient:
 - Small gradient magnitude:
 - separation penalty: large (all directions)

$$E p, q = \frac{1}{\nabla I_p - I_q}$$

- Large gradient magnitude
 - separation penalty :
 - small in direction of gradient.
 - very large in other directions.

Why Use Geo Cuts

Case where simple separation energy did not work:

- green: wrong segmentation
- red: correct segmentation

Using Geo-cuts leads to

- Higher separation energy for green than for red.

EMS vs. Geo Cuts

EMS gray matter

Geo-Cuts white matter

Medical Imaging Informatics 2009, N.Schuff

Course # 170.03 Slide 57/67

Deformable Models

- So far segmentation methods have not exploited knowledge of shape.
- In shape based methods, the segmentation problem is again formulated as an energy-minimization problem. However, a curve evolves in the image until it reaches the lowest energy state instead of a MRF.
- External and internal forces deform the shape control the evolution of segmentation.

Deformable Template Segmentation

A. Lundervold et al. Model-guided Segmentation of Corpus Callosum in MR Images www.uib.no/.../arvid/cvpr99/cvpr99 7pp.html

3D Deformable Surfaces

Automated Delineation of Prostate Bladder and Rectum

Costa, J. École Nationale Supérieure des Mines de Paris www.jimenacosta.com/Jime.Publications.MICCAI0

3D Deformable Surfaces

<u>Tamy Boubekeur</u>, <u>Wolfgang Heidrich</u>, <u>Xavier Granier</u>, <u>Christophe Schlick</u> Computer Graphics Forum (Proceedings of EUROGRAPHICS 2006), Volume 25, Number 3, page 399--406 - 2006

Segmentation Via Texture Extraction

- Two classical methods for feature extraction
 - Co-occurrence matrix (CM)
 - Fractal dimensions (FD)

Co-Occurrance Matrix (CM)

Definition: The CM is a tabulation of how often different combinations of pixel brightness values (gray levels) occur in an image.

Radiology & Biomedical Imaging

Evaluation of CM

CM

MRI with spatially varying intensity bias

MRI with spatially homogenous intensity bias

Fractal Dimensions

Intuitive Idea:

Many natural objects have structures that are repeated regardless of scale. Repetitive structures can be quantified by fractal dimensions (FD).

Sierpinski Triangle

Fractal Dimensions

Definition:

Box counting

Sierpinski Triangle

Fractal Dimensions

MEDICAL IMAGE SEGMENTATION USING MULTIFRACTAL ANALYSIS

Soundararajan Ezekiel;

www.cosc.iup.edu/sezekiel/Publications/Medical

Summary

Automated	Semi- automated	Initializing	Manual
Threshold	Region growing	Co- occurrence	Tracing
MRF Shape Models Fractal Dimensions	K-means Fuzzy C-Means		

Literature

- 1. Segmentation Methods I and II; in Handbook of Biomedical Imaging; Ed. J. S. Suri; Kluwer Academic 2005.
- 2. WIKI-Books: http://en.wikibooks.org/wiki/SPM-VBM
- 3. FSL- FAST: http://www.fmrib.ox.ac.uk/fsl/fast4/index.html

